PUBLIC ASSESSMENT REPORT
of the Medicines Evaluation Board
in the Netherlands

Etalpha i.v., 2 microgram/ml solution for injection
LEO Pharma B.V., the Netherlands

alfacalcidol

This assessment report is published by the MEB pursuant Article 21 (3) and (4) of Directive 2001/83/EC. The report comments on the registration dossier that was submitted to the MEB and its fellow –organisations in all concerned EU member states. It reflects the scientific conclusion reached by the MEB and all concerned member states at the end of the evaluation process and provides a summary of the grounds for approval of a marketing authorisation. This report is intended for all those involved with the safe and proper use of the medicinal product, i.e. healthcare professionals, patients and their family and carers. Some knowledge of medicines and diseases is expected of the latter category as the language in this report may be difficult for laymen to understand.

This assessment report shall be updated by a following addendum whenever new information becomes available.

General information on the Public Assessment Reports can be found on the website of the MEB.

To the best of the MEB’s knowledge, this report does not contain any information that should not have been made available to the public. The MAH has checked this report for the absence of any confidential information.

EU-procedure number: NL/H/1929/001/MR
Registration number in the Netherlands: RVG 14698

6 September 2010

Pharmacotherapeutic group: vitamin D and analogues
ATC code: A11CC03
Route of administration: intravenous
Therapeutic indication: prevention and treatment of renal osteodystrophy and treatment of secondary hyperparathyroidism in haemodialysis patients (chronic kidney disease stage 5)

Prescription status: prescription only
Date of first authorisation in NL: 13 May 1991
Concerned Member States: Mutual recognition procedure with PL, RO
Application type/legal basis: Directive 2001/83/EC, Article 8(3)

For product information for healthcare professionals and users, including information on pack sizes and presentations, see Summary of Product Characteristics (SPC), package leaflet and labelling.
I INTRODUCTION

Based on the review of the quality, safety and efficacy data, the member states have granted a marketing authorisation for Etalpha i.v., 2 microgram/ml solution for injection from LEO Pharma B.V. The date of authorisation in the Netherlands was on 13 May 1991.

The product is indicated for prevention and treatment of renal osteodystrophy and treatment of secondary hyperparathyroidism in haemodialysis patients (chronic kidney disease stage 5)

A comprehensive description of the indications and posology is given in the SPC.

Alfacalcidol (1α-hydroxy vitamin D3, 1α(OH)D3), the active substance in One-Alpha®, is a synthetic vitamin D analogue. Alfacalcidol is a pro-drug that exerts its action after it has been metabolised to calcitriol (1α,25(OH)2D3), mainly in the liver. Calcitriol is the physiologically active form of vitamin D hormone, and under normal circumstances calcitriol is formed primarily in the kidney by a 1α-hydroxylase-mediated enzymatic hydroxylation of calcifediol (25(OH)D3). As a consequence of the presence of the 1α-hydroxyl group, alfacalcidol only requires hydroxylation at the 25 position in the liver to yield calcitriol and therefore acts independently of renal function.

In patients with chronic kidney disease, impaired 1α-hydroxylation by the kidneys reduces endogenous calcitriol production. This contributes to the disturbances in bone and mineral metabolism including secondary hyperparathyroidism and renal bone disease. Calcitriol has direct effects on the parathyroid gland to prevent parathyroid gland hyperplasia and also has additive effect with calcium to suppress PTH production. Calcitriol also increases gastrointestinal absorption of calcium to correct hypocalcaemia. Calcitriol directly affects osteoblasts in bone and may lead to improved bone formation and mineralization.

In pre-dialysis patients, use of alfacalcidol is associated with lowering of PTH levels, improvement of renal bone disease and increase in bone mineral density. In chronic dialysis patients, alfacalcidol is effective in suppressing secondary hyperparathyroidism.

LEO Pharmaceutical Products Ltd. A/S started research in the vitamin D area in 1973 and alfacalcidol was synthesised. Concurrently, researchers in the United States had produced alfacalcidol. A license agreement was signed where LEO Pharma got the rights to the product in most of the world. The original approval of Etalpha capsules (NL License RVG 07603) in 1978 in the Netherlands was based on data from clinical studies available at that time. The product is also registered in several countries as One-Alpha® capsules. Subsequently Etalpha oral solution was approved in 1983 and the intravenous (i.v.) dosage form in 1991.

This mutual recognition procedure concerns the original full application for Etalpha i.v., made in 1991 in the Netherlands.

The marketing authorisation is granted based on article 8(3) of Directive 2001/83/EC.

This type of application is based on a full dossier, i.e. including chemical, biological, pharmaceutical, pharmacological-toxicological and clinical data. The quality assessment of the medicinal product is discussed in chapter II of this report.

In support of the efficacy and safety of the product in the proposed indications, the MAH submitted a number of clinical studies:
- four studies in patients with renal failure (OA 186, OA 0301 DE, OA 187, and UA 190 F).
In addition, four studies in other indications were submitted, but considered irrelevant and therefore these were not assessed.

Besides safety data obtained from the clinical studies, post-marketing surveillance data were assessed in order to establish the safety profile of the product.

No scientific advice has been given to the MAH with respect to these products.
No paediatric development programme has been submitted, as this was not required at the time of the initial application.

II SCIENTIFIC OVERVIEW AND DISCUSSION

II.1 Quality aspects

Compliance with Good Manufacturing Practice
The MEB has been assured that acceptable standards of GMP (see Directive 2003/94/EC) are in place for these product types at all sites responsible for the manufacturing of the active substance as well as for the manufacturing and assembly of this product prior to granting its national authorisation.

Active substance
The active substance is alfacalcidol, an established active substance described in the European Pharmacopoeia (Ph.Eur.*). Alfacalcidol is a white, crystalline powder. The active substance is practically insoluble in water, freely soluble in ethanol and slightly soluble in propylene glycol and sesame oil.

The CEP procedure is used for the active substance. Under the official Certification Procedures of the EDQM of the Council of Europe, manufacturers or suppliers of substances for pharmaceutical use can apply for a certificate of suitability concerning the control of the chemical purity and microbiological quality of their substance according to the corresponding specific monograph, or the evaluation of reduction of Transmissible Spongiform Encephalopathy (TSE) risk, according to the new general monograph, or both. This procedure is meant to ensure that the quality of substances is guaranteed and that these substances comply with the European Pharmacopoeia.

Manufacturing process
A CEP has been submitted; therefore no details on the manufacturing process have been included.

Quality control of drug substance
The MAH adopted Ph.Eur. specifications and analytical methods, as well as the additional specifications/analytical methods as included on the CEP. Batch analytical data demonstrating compliance with the drug substance specification have been provided for four production-scale batches.

Stability of drug substance
The re-test period for the drug substance is three years when stored under the stated conditions. Assessment thereof was part of granting the CEP and has been granted by the EDQM.

* Ph.Eur. is an official handbook (pharmacopoeia) in which methods of analysis with specifications for substances are laid down by the authorities of the EU.

Medicinal Product

Composition
Etalfa i.v. 2 microgram/ml is a clear, colourless solution. The pH of the formulation is 7.5. The osmolarity of the formulation is 8000 mOsm/kg (strongly hypertonic).

The solution for injection is packed in amber glass ampoules (Type 1) in packs of 10 ampoules containing either 0.5 ml or 1 ml each.

The excipients are: citric acid monohydrate (E330), anhydrous ethanol, sodium citrate (E331), propylene glycol, water for injections.

Pharmaceutical development
The development of the product has been described, the choice of excipients is justified and their functions explained. Since the solution for injection has been developed the twenty-five years ago, the development studies have not been performed according to the current guidelines. A 5% overage has been used to compensate for loss during production. Alfacalcidol tends to stick to the surface of the lines used. The solution is hypertonic, but given the relatively low volume to administer, this is acceptable. The pH is chosen, since alfacalcidol is most stable in solutions of neutral pH. The drug substance, alfacalcidol, adsorbs to the walls of the ampoules and should therefore be shaken at least five seconds before use. The pharmaceutical development of the product has been adequately described.

Manufacturing process

Citric acid and sodium citrate are dissolved in water. The buffer solution is mixed with propylene glycol and part of the ethanol. Alfacalcidol is first dissolved in part of the ethanol and then mixed through the buffer solution. Water for injection is added up to the desired weight. The solution is stirred and filtered before filling out. The manufacturing process has been adequately validated according to relevant European guidelines. Process validation data on the product has been presented for production-scale batches.

Control of excipients

The excipients comply with Ph.Eur. Additional requirements for microbial quality have been included. These specifications are acceptable.

Quality control of drug product

The product specification includes tests for appearance, identity, assay, degradation, particulate matter, sterility, endotoxins, clarity and colour of solution, pH and extractable volume. Except for total impurities the release and shelf-life requirements are identical. The analytical methods have been adequately described and validated. Batch analytical data from the proposed production site have been provided on three production-scale batches for each fill volume, demonstrating compliance with the release specification.

Stability of drug product

Stability data, covering the whole shelf life, have been provided eight full-scaled batches stored at 5°C (36 months) and 25°/60% RH (7-25 months). The conditions used in the stability studies are according to the ICH stability guideline. The batches were stored in 1 ml one-point-cut amber glass ampoules. Amber glass is used, because alfacalcidol is extremely sensitive to light. At long term storage conditions no other trends or changes have been observed. At accelerated storage conditions, during six months, only some variability in assay and a slight increase in trans-alfacalcidol and total impurities has been observed. No other trends or changes were seen. The claimed shelf-life of 36 months is justified when stored at 5°C.

Specific measures concerning the prevention of the transmission of animal spongiform encephalopathies

There are no substances of ruminant animal origin present in the product nor have any been used in the manufacturing of this product, so a theoretical risk of transmitting TSE can be excluded.

II.2 Non clinical aspects

Etalpha LEO formulations contain a well-known active ingredient, alfacalcidol (1α-hydroxy vitamin D3), with long term human market experience. The pharmacodynamics, pharmacokinetics and toxicology of alfacalcidol are well known. The non-clinical studies show a non-clinical safety profile that is consistent with the pharmacological mechanism of action, and what is known clinically for alfacalcidol. The toxicity of alfacalcidol is attributed to the known vitamin D-effect of calcitriol on calcium homeostasis, which is characterised by hypercalcaemia, hypercalciuria and eventually soft tissue calcification. Furthermore, the risk assessment supports the oral and i.v. systemic safety of Etalpha LEO formulations in man, for the prescribed use in treatment of secondary hyperparathyroidism in patients with chronic kidney disease.
Environmental risk assessment
An Environmental Risk Assessment (ERA) for One-Alpha is not necessary since the active ingredient is a pro-drug for a vitamin and vitamins are exempted from the need for an ERA. Nevertheless, the MAH has provided an acceptable ERA, which has been assessed.

II.3 Clinical aspects

Quality of clinical studies, compliance with GCP
Studies OA 186, OA 187, and UA 190 F were conducted between 1986 and 1990. These studies were conducted in accordance with the guidelines of that time. The other clinical studies were conducted in compliance with International Conference on Harmonization (ICH) guidelines on Good Clinical Practice (GCP).

Pharmacodynamics
No human pharmacodynamic studies were included in the current application, which is acceptable. Alfacalcidol exerts its primary pharmacodynamic action upon hydroxylation of the pro-drug in the liver, resulting in the formation of calcitriol which is the active form of vitamin D. Reduced endogenous calcitriol levels as observed in CKD patients contribute to the development of renal osteodystrophy and in particular the evolution of secondary hyperparathyroidism. Supplementation of calcitriol by vitamin D analogs is common clinical practice in CKD patients throughout the world. Alfacalcidol belongs to one of the initial vitamin D analogs used and has a long history of use (since 1978). The effects of alfacalcidol can be easily understood from the actions of endogenous calcitriol. Due to its secondary effects on calcium and phosphate absorption (increased absorption), serum calcium and phosphate levels should be monitored regularly. In addition, to avoid a too low serum PTH and the development of adynamic bone disease with low bone turnover, serum PTH levels must be monitored regularly as well.

Clinical efficacy
The MAH submitted four clinical studies performed after the initial application in 1978 in support of the current indication and posology. Study OA 186 (1989-1991) is considered the pivotal study for the efficacy in prevention and treatment of renal osteodystrophy and secondary hyperparathyroidism in pre-dialysis patients whereas study OA 0301 DE (2003-2004) is considered the pivotal study for use in haemodialysis patients (CKD stage 5). Studies OA 187 and UA 190 F were open label studies conducted between 1986 and 1991 and are considered supportive data for the solution for injection.

Study OA 186

Design
This was a phase 3 multi-centre, double-blind, placebo-controlled, parallel group study designed to demonstrate the prevention of histological abnormalities in bone and development of hyperparathyroidism in pre-dialysis patients with early chronic renal failure.

Patients aged ≥ 18 years, of either sex, with chronic renal failure (creatinine clearance 15-50 ml/min) were included in this study. Major exclusion criteria included significant hepatic diseases, a high probability of dialysis treatment within the next three months, treatment with high doses of vitamin D or vitamin D metabolites in the past 6 months, hypercalcaemia, and bone disease (symptomatic, radiographic or serum alkaline phosphatase levels above normal).

After a qualification phase lasting up to 1 month during which laboratory parameters including creatinine clearance were checked, patients entered a dose titration phase of 4 months during which the dose of the assigned medication was titrated according to serum calcium levels. Patients received One-Alpha® capsules for oral use as a single dose with food each morning. The initial dose was 0.25 μg/day. If hypercalcaemia occurred the dose was reduced to 0.25 μg on alternate days. After the first four months, patients entered a maintenance phase of 20 months during which maintenance treatment was continued. The maximum dose was 1 μg/day.

All medication for other conditions than bone disease of hyperparathyroidism was allowed. Calcium supplements were to remain stable. Phosphate-binding agents (other than calcium carbonate) were given
when dietary measures failed to maintain adequate serum phosphate levels. Dietary measures were not standardised but each centre followed normal dietary policy.

The objectives were to determine:
1. the efficacy of alfalcaldiol during early chronic renal failure in:
 a. the prevention of the development of histological abnormalities in bone and
 b. the prevention of the development of hyperparathyroidism.
2. the safety of alfalcaldiol during early chronic renal failure.
3. the effect of alfalcaldiol on the rate of decline of renal function in early chronic renal failure.

Primary efficacy endpoint
The primary response criterion was the incidence of bone abnormality at the end of the trial (2 years or upon early withdrawal). Bone abnormalities were assessed as the presence of one or both of the following:
1. Osteomalacia, defined as the presence of 5 or more osteoid lamellae visible under polarised light in any a osteoid seam.
2. Osteitis fibrosa, defined as the presence of at least grade 2 osteitis fibrosa (grade 2: fibrosis present on resorbing surfaces of the osteoid surfaces).

Secondary efficacy endpoint
1. Changes in serum levels of iPTH from baseline to the end of the trial were assessed.
2. Changes in creatinine clearance rates from baseline to 6, 12, 18 and 24 months were compared for the two groups.

Other parameters assessed were changes in quantitative histomorphometric parameters, grading of the extent of bone pain and myopathy, grading of sub-periosteal erosions of the hand and clavicle. In addition, the change from baseline to end of trial in serum alkaline phosphatase and 1,25(OH)2D3 were assessed.

Results
A total of 179 patients were enrolled in the study at 17 centres in Europe of which 177 were randomised to treatment. A total of 39 (22%) out of 177 randomised patients were withdrawn from double-blind treatment; 16 (18%) in the alfalcaldiol treated group and 23 (26%) in the placebo-treated group. The most common reason for withdrawal was patients requiring dialysis (n=8 (9.0%) in the alfalcaldiol treated group and n=10 (11.4%) in the placebo-treated group). Four patients died in the alfalcaldiol treated group and one in the placebo-treated group. Patients that died in the alfalcaldiol treated group died because of underlying co-morbidity (a cerebrovascular accident, an acute myocardial infarction, cardiac failure and lung carcinoma). The patient in the placebo group died at home with cause of death unknown.

Other reasons for withdrawal in the alfalcaldiol treated group were defaulted (n=2), nephrectomy (n=1), and exclusion criteria emerging (n=1). Other reasons for withdrawal in the placebo group were moved away (n=2), drug supplies past expiry date (n=1), hypertensive encephalopathy (n=1) and persistent hypocalcaemia (n=1).

The mean treatment duration was 92 weeks (range 4 – 122 weeks) in the alfalcaldiol treated group and 89 weeks (range 5-112 weeks) in the placebo-treated group. Over 90% of patients included in the primary analysis had a treatment duration of at least 90 weeks.

All patients started at a dose level of 0.25 μg/day. At the last visit when treatment was prescribed, 45.5% of the patients received 0.25 g/day, 30.3% 0.5 μg/day and 11.9% 1 μg/day. The mean maintenance dose was 0.43 μg/day.

Primary efficacy analysis
Of the 89 patients randomised to treatment with alfalcaldiol, 72 provided both baseline and end of treatment biopsies. In the placebo treated group, 62 out of 87 patients had both baseline and end of treatment biopsies available. The number of patients with bone abnormality present at baseline was 76.4% in the alfalcaldiol treated group and 72.6% in the placebo treated group. At the end of treatment, 54.2% of the alfalcaldiol treated patients versus 82.3% of the placebo-treated patients had bone abnormalities (see table below).
Table 1 - Patients with histological bone abnormality at baseline and end of treatment

<table>
<thead>
<tr>
<th>Bone abnormality present</th>
<th>Alfacalcidol (N=72)</th>
<th>Placebo (N=62)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>At baseline</td>
<td>55 (76.4%)</td>
<td>45 (72.6%)</td>
<td>0.6</td>
</tr>
<tr>
<td>End of treatment</td>
<td>39 (45.2%)</td>
<td>51 (82.3%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The majority of patients had bone abnormalities at baseline. Therefore, the study does not meet the initial objective to demonstrate prevention of bone abnormalities. Results can only be used to study treatment or progress of bone abnormalities. The results demonstrate a statistically significant difference in patients with bone abnormalities in favour of alfacalcidol. The difference in proportion of patients with bone abnormalities (One-Alpha® - placebo) was -0.28 (95% CI : -0.13 to -0.43). The mean difference of 28% in favour of One-Alpha® is considered clinically relevant, demonstrating efficacy of One-Alpha® in the treatment of bone abnormalities.

Secondary efficacy analysis
Serum parathyroid hormone levels were comparable at baseline which is reflected in the median (Table 2). The high mean PTH level in the alfacalcidol treated group was explained by a small number of patients with high PTH levels. In the placebo-treated group serum PTH levels increased statistically significantly, whereas the alfacalcidol treated group did not show a significant change from baseline. Differences between treatment groups were statistically significant (difference in mean change of -9.33 pmol/l; 95% CI: -14.19, -4.47).

Table 2 - Change in serum PTH and creatinine clearance from baseline to end of treatment

<table>
<thead>
<tr>
<th>Laboratory parameter</th>
<th>Alfacalcidol (N=89)</th>
<th>Placebo (N=87)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTH (pmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At baseline Mean (sd)</td>
<td>10.31 (15.90)</td>
<td>6.34 (4.57)</td>
<td>0.9</td>
</tr>
<tr>
<td>Median</td>
<td>4.56</td>
<td>5.24</td>
<td>0.9</td>
</tr>
<tr>
<td>Number</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>End of treatment Mean (sd)</td>
<td>7.77 (9.16)</td>
<td>14.60 (17.63)</td>
<td>0.003</td>
</tr>
<tr>
<td>Median</td>
<td>5.29</td>
<td>8.42</td>
<td>0.003</td>
</tr>
<tr>
<td>Number</td>
<td>84</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Change from baseline Mean</td>
<td>-1.90</td>
<td>7.43</td>
<td><0.001</td>
</tr>
<tr>
<td>95% CI</td>
<td>-5.44, 1.64</td>
<td>4.05, 10.81</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>76</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Difference between groups Mean</td>
<td></td>
<td>-9.33</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>-14.19, -4.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine clearance (ml/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At baseline Mean (sd)</td>
<td>31.6 (10.8)</td>
<td>32.9 (11.6)</td>
<td>0.43</td>
</tr>
<tr>
<td>Median</td>
<td>30.0</td>
<td>31.5</td>
<td>0.43</td>
</tr>
<tr>
<td>Number</td>
<td>88</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>End of treatment Mean (sd)</td>
<td>26.6 (16.7)</td>
<td>28.7 (17.2)</td>
<td>0.44</td>
</tr>
<tr>
<td>Median</td>
<td>26.0</td>
<td>28.7</td>
<td>0.44</td>
</tr>
<tr>
<td>Number</td>
<td>85</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Change from baseline Mean</td>
<td>-5.0</td>
<td>-4.6</td>
<td>0.85</td>
</tr>
<tr>
<td>95% CI</td>
<td>-8.0, -2.0</td>
<td>-7.7, -1.5</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>85</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Difference between groups Mean</td>
<td></td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>-4.7, 3.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall, treatment with alfacalcidol but not placebo reduced serum iPTH levels. This is in line with expectations based on current knowledge of the active compound calcitriol. It is noticed that part of the
patients included in the study and receiving alfacalcidol, do not meet current standards for treatment of hyperparathyroidism as reflected in the NKF K/DOQI treatment guidelines. In addition, no information on the percentage of patients reaching treatment targets can be derived from this study because of lack of target ranges for iPTH values by CKD stage for the analysis method used in this study. Baseline creatinine clearance was comparable for both treatment groups (Table 4). In both treatment groups, creatinine clearance decreased from baseline to end of treatment, but no differences were observed between treatment groups. A decrease of creatinine clearance was anticipated as patients renal function is known to worsen in time. The comparable creatinine clearance indicates that long-term use of alfacalcidol did not have an adverse effect on renal functions.

Serum alkaline phosphatase was analysed using data from the reasay of frozen samples at a central laboratory. Alkaline phosphatase levels were comparable at baseline between treatment groups (154 ± 69 IU/l alfacalcidol treated group versus 152 ± 71 IU/l placebo-treated group). During treatment serum alkaline phosphatase levels were decreased at six months but increased again thereafter in the alfacalcidol treated group. At the end of treatment, serum were still reduced (141 ± 55 IU/l), although not statistically significant, and increased in the placebo-treated group (169 ± 83 IU/l). The difference between treatment groups was statistically significant (difference in mean change -31.4 IU/l; 95% CI: -48.8, -13.9). During vitamin D deficiency, serum alkaline phosphatase increases which is indicative of worsening bone disease as is observed in the placebo-treated group. Initially, alfacalcidol seems to improve bone disease based on the reduced alkaline phosphatase levels, however, the long-term effect of alfacalcidol on bone turnover remains unknown from the current study.

Serum albumin corrected calcium levels at baseline were comparable between treatment groups (2.36 ± 0.15 mmol/l alfacalcidol treated group versus 2.37 ± 0.14 mmol/l placebo treated group). Corrected calcium levels increased in the alfacalcidol treated group (mean change: 0.12 mmol/l; 95% CI: 0.07, 0.17 mmol/l) and remained stable in the placebo-treated group (mean change: -0.01 mmol/l; 95% CI: -0.05, 0.03 mmol/l). There was a statistically significant difference in mean change between the groups of 0.13 mmol/l (95% CI: 0.06, 0.19 mmol/l).

Baseline levels of calcium were in the upper range of the target criteria. Hypercalcaemia is a dose-limiting factor for alfacalcidol and dose was titrated based on serum calcium levels. This is adequately stated in the proposed SPC. Occurrence of hypercalcaemia is further discussed in the safety assessment.

Serum sample was insufficient for analysis of 1,25(OH)2D3.

In the vast majority of the patients (≥ 95%) bone pain and myopathy were absent and radiographs of hands were normal at baseline. Also, these parameters did not change upon treatment for ≥ 95% of the patients and no differences were observed between treatment groups.

Conclusion
This study showed that long term treatment with alfacalcidol improved bone abnormalities in stage 3 and 4 CKD patients compared with placebo treatment. Due to the limited number of patients without bone abnormalities, prevention of bone abnormalities could not be demonstrated. However, despite the absence of data in prevention of renal osteodystrophy, current treatment guidelines state that vitamin D analogs should be considered in patients CKD patients stages 3-5 not on dialysis with elevated iPTH levels and vitamin D deficiency (NKF K/DOQI guidelines 2003, KDIGO 2009). In addition, new clinical trials are not likely to be performed because of the wide-spread use of alfacalcidol in CKD patients. Therefore, based on current clinical practice and the established role of vitamin D in mineral homeostasis, it can be anticipated that alfacalcidol can also play a role in prevention of renal osteodystrophy.

Study OA 186 also showed that treatment with alfacalcidol prevented the increase in serum iPTH levels that was observed in the placebo-treated group, supporting its efficacy in the treatment of secondary hyperparathyroidy in line with current knowledge and common clinical practice. Reference to current treatment guidelines as adequately stated in the SPC prevents the treatment of patients without elevated levels of iPTH as was observed in this study.

The dosing regimen (once daily) and the starting and maintenance dose used in the clinical trials support the proposed posology in the SPC and reflect current common clinical practice.

Study OA 0301 DE
Design

This was a multi-centre, prospective, controlled, parallel group, randomised, open phase III study to evaluate the efficacy of alfacalcidol in the treatment of secondary hyperparathyroidism in patients with chronic renal failure using three different treatment modalities.

Patients (≥ 18 years) with end stage renal disease on haemodialysis three times a week with secondary hyperparathyroidism in patients. Plasma iPTH levels were 15.8 pmol/l < P-iPTH ≤126.4 pmol/l at stratification.

Major exclusion criteria included a serum calcium (total) multiplied by serum phosphate (Ca x P product) > 5.65 mmol²/l², use of calcium lowering therapy within two weeks before study entry, concurrent malignancy or clinically significant liver disease at qualification and continuous treatment with anti-epileptics interfering with vitamin D metabolism (short term treatment with anti-epileptics was, however, always allowed).

The study consisted of four phases (see also Table 5). Phase 1 was a qualification phase of two weeks to decide whether the patient was eligible for the study. Eligible patients entered a washout phase of 8 weeks in which treatment with any vitamin D analogue or calcitonin was not allowed as baseline values of calcium, phosphorus and P-iPTH were to be measured at the end of the phase.

Following the washout phase, all patients complying with the inclusion/exclusion criteria were to be stratified (according to P-iPTH levels) and randomised, and proceeded to the treatment phase which lasted 16 weeks. Patients were randomised to treatment with either continuous oral treatment (administration once daily), pulse oral treatment (administration 3 times a week), or pulse i.v. treatment (administration 3 times a week) with alfacalcidol. Phase 4 was a follow-up phase of 4 weeks during which SAEs were recorded. Blood samples were taken before starting the dialysis session.

Patients were treated with the following dosing schedules:
1. Oral once daily alfacalciferol capsules 0.25 μg up to 4 μg/day, to be taken in the morning;
2. Oral three times weekly (intervals of 48 or 72 hours) alfacalciferol capsules 0.25 μg with a maximum of 8 μg/day, administered at the end of each haemodialysis session;
3. I.v. three times weekly (intervals of 48 or 72 hours) alfacalciferol ampoules 2 μg/ml with a maximum of 8 μg/day, administered at the end of each haemodialysis session.

The primary objective was to evaluate the efficacy of alfacalcidol in the treatment of secondary hyperparathyroidism in patients with chronic renal failure using three different treatment modalities.

Secondary objectives were:
1. To compare the efficacy of three different treatment modalities of alfacalcidol in the treatment of secondary hyperparathyroidism in patients with chronic renal failure.
2. To evaluate the safety and tolerability of alfacalcidol in the treatment of secondary hyperparathyroidism in patients with chronic renal failure.

Primary efficacy endpoint

The primary response criterion was the proportion of patients achieving a ≥ 30% reduction in P-iPTH (Nichols Intact assay) from baseline at four consecutive on-treatment visits. Baseline values used for statistical analysis corresponded to values obtained at the end of the washout phase (i.e. at visit 4).

Secondary efficacy endpoint

1. To compare the efficacy of three different treatment modalities of alfacalcidol (p.o. continuous, p.o. pulse and i.v. pulse). In addition to recorded changes in P-iPTH levels (main parameter), the efficacy parameters included:
 - bone formation/resorption parameters: alkaline phosphatase, bAP, Tracp 5b.
 - vitamin D parameters: 1(OH)D₃ (alfacalcidol), 1,25(OH)₂D₃ (active vitamin D) and 25OHD₃ (vitamin D status).

Safety endpoint

The safety endpoints included frequency tabulations of any reported adverse events. For laboratory data, the relationship between the dosing of alfacalcidol and the change in laboratory values was assessed.
Results
A total of 266 patients were enrolled in the study at 22 centres. At the qualification visit 39 patients were disqualified mainly due to a too high Ca x P product. During the washout period 85 patients were withdrawn prior to randomisation, mainly because exclusion criteria emerged during the study. The remaining 142 patients were randomised to study treatment; 49 patients to p.o. continuous treatment, 45 patients to p.o. pulse treatment and 48 to i.v. pulse treatment. A total of 8 patients did not complete the treatment according to the protocol.

Primary efficacy analysis
The proportion of patients achieving a ≥ 30% reduction in the P-iPTH (Nichols Intact assay) at four consecutive visits in the p.o. continuous treated group was 40/49 (82%), 32/45 (71%) in the p.o. pulse treated group and 35/48 (73%) in the i.v. pulse treated group (Table 3). The p.o. continuous group had a significant higher proportion of treatment success than 60%. The p.o. pulse and i.v. pulse treated groups did not differ significantly from 60%.

Table 3 - The proportion of patients achieving a ≥ 30% reduction in the P-iPTH (Nichols Intact assay) at four consecutive visits (ITT-analysis).

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Success/ no. of pt.</th>
<th>Proportion</th>
<th>98.3% CI</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.o.continuous</td>
<td>40/49</td>
<td>0.82</td>
<td>(0.65-0.93)</td>
<td>0.0021</td>
</tr>
<tr>
<td>p.o.pulse</td>
<td>32/45</td>
<td>0.71</td>
<td>(0.52-0.86)</td>
<td>0.1672</td>
</tr>
<tr>
<td>i.v.pulse</td>
<td>35/48</td>
<td>0.73</td>
<td>(0.55-0.87)</td>
<td>0.0883</td>
</tr>
<tr>
<td>Total</td>
<td>107/142</td>
<td>0.75</td>
<td>(0.66-0.84)</td>
<td></td>
</tr>
</tbody>
</table>

* Test for the proportion = 0.60 by exact binomial test within each treatment group

The results from the per protocol analysis set were very similar to the ITT analysis: The proportion of patients achieving a ≥ 30% reduction in the P-iPTH (Nichols Intact assay) at four consecutive visits in the p.o. continuous treated group was 39/47 (83%), 32/43 (74%) in the p.o. pulse treated group and 35/46 (76%) in the i.v. pulse treated group.

Based on the p.o. continuous treatment group, the high proportion (82%) of patients with at least a 30% reduction of PTH indicates that alfacalcidol is effective in lowering PTH levels and supporting its well-known use in the treatment of secondary hyperparathyroidism. Despite the absence of any comparator, given the nature of the disease it is reasonable to assume that this effect cannot be explained by the natural course of the disease. The data support efficacy of the intermittent i.v. dosing regimen which is considered a common dosing regimen in haemodialysis patients.

The MAH was requested to calculate the number of patients reaching therapeutic target according to current treatment guidelines. A total of 82 out of 142 patients had PTH levels above 33 pmol/l at baseline. Upon treatment (any dosing regimen) 63 out of 82 patients had PTH levels below 33 pmol/l, indicating that about 75% of the patients currently considered for treatment reached levels below the upper target level further supporting the efficacy of the active treatment.

According to the study protocol, PTH levels below the lower target level were not a reason for dose adjustment/interruption. However, in accordance with current treatment guidelines monitoring of PTH and dose adjustment based on the target range of PTH has been included in the SPC.

Secondary efficacy analyses
The proportion of patients achieving a ≥ 30% reduction in the P-iPTH (Nichols Bio-Intact assay) at four consecutive visits in the p.o. continuous treated group was 42/49 (86%), 31/45 (69%) in the p.o. pulse...
treated group and 34/48 (71%) in the i.v. pulse treated group. These results were comparable with the primary efficacy analysis based on the Nichols Intact assay. Statistical analyses did not reveal differences in primary efficacy criterion between treatment groups. For all laboratory parameters box-and-whisker plots were examined. P-iPTH tended to increase during the washout period and to decrease again during treatment, but inter-patient variability was large.

In addition, for all laboratory parameters the mean was plotted along with the mean dose of alfacalcidol. For S-phosphate, B-Ca (ionised), S-Ca (total) 1,25(OH)₂D₃ these parameters seemed to increase in parallel with the increases in alfacalcidol dose. During the 16-week treatment, there was a statistically significant decrease in serum alkaline phosphatase levels with mean values of 105-113 U/l at baseline vs. 84-101 U/l at the last visit (Mean ± sd: p.o. continuous group: 104.5 ± 51.4 U/l at baseline and 83.9 ± 27.9 U/l at week 16; p.o. pulse group: 112.4 ± 49.4 U/l at baseline and 100.9 ± 49.5 U/l at week 16; i.v. pulse group: 113.0 ± 51.6 U/l at baseline and 100.1 ± 48.4 U/l at week 16).

There was no evidence that the proportion of patients achieving a ≥ 30% reduction in the P-iPTH varies across treatment and study centre, sex, age group and disease severity of secondary hyperparathyroidism. The youngest age group (30-49 years) tended to have a lower overall proportion of treatment success, although it should be noted that the proportion is only based on 20 patients.

Conclusion

In this study, performed in stage 5 CKD patients on haemodialysis, alfacalcidol orally once daily reduced iPTH levels in the majority of the patients. The high proportion (82%) of patients with at least a 30% reduction of iPTH indicates that alfacalcidol is effective in lowering iPTH levels supporting its well-known use in the treatment of secondary hyperparathyroidism. Despite the absence of any comparator, given the nature of the disease it is reasonable to assume that this effect can not be explained by the natural course of the disease. In a post-hoc subanalysis a total of 82 out of 142 patients had iPTH levels above 33 pmol/l at baseline. Upon treatment (any dosing regimen) 63 out of 82 patients had iPTH levels below 33 pmol/l, indicating that about 75% of the patients currently considered for treatment reached levels below the upper target level further supporting the efficacy of the active treatment. Again, reference to current treatment guidelines as adequately stated in the SPC prevents the treatment of patients without elevated levels of iPTH. iPTH levels below the lower target level were not a reason for dose adjustment/interruption. However, in accordance with current treatment guidelines monitoring of iPTH and dose adjustment based on the target range of iPTH has been included in the SPC to reduce the risk of adynamic bone disease. The once daily oral dosing regimen is in line with that proposed in the SPC and reflects current common clinical practice. The three weekly oral dosing regimen was considered not proven during the national procedure because of limitations in study design and withdrawn from the SPC by the MAH before the MRP started.

Data from study OA 0301 DE also support efficacy of the intermittent i.v. dosing regimen in the treatment of secondary hyperparathyroidism which is considered an established dosing regimen in haemodialysis patients.

Additional data

The conclusions of the pivotal studies are further supported by data from two open uncontrolled studies OA 187 and UA 190 F, showing that intermittent i.v. dosing of alfacalcidol was effective in lowering iPTH levels in patients on haemodialysis. In addition, the observed lowering of alkaline phosphatase suggests improvement of bone disease. Despite the absence of data on bone histology, based on current knowledge it is reasonable to assume that also intermittent i.v. dosing of alfacalcidol in haemodialysis patients plays a role in prevention and treatment of renal osteodystrophy, depending on the mineral status of the patient. The dosing regimen is in line with current standard clinical practice.

For all treatment formulations, it is adequately stated in the SPC that alfacalcidol should be used in the context of a multiple therapeutic approach and that regular monitoring of calcium, phosphate, iPTH and calcium x phosphorus levels is required. The efficacy of alfacalcidol in children is acknowledged based on its widespread use in clinical daily practice. The oral dose of 10-20 ng/kg/day is considered to be adequately supported by literature references including some recently performed studies.
Clinical Safety
Overall, the reported adverse events (AEs) were of mild to moderate intensity in both studies and the number of AEs related to alfacalcidol treatment was limited. Most AEs relate to the secondary effects of alacalcidol on phosphate and especially calcium absorption (increased absorption). The most common short term adverse events associated with alfacalcidol treatment relate to hypercalcaemia. The clinical features of hypercalcaemia include anorexia, constipation, nausea, vomiting, headache, weakness, apathy and somnolence. More severe manifestations may include fever, thirst/polydipsia, dehydration, polyuria, nocturia, abdominal pain, paralytic ileus, cardiac arrhythmias and psychiatric disturbances. Rarely, overt psychosis and metastatic calcification (particularly nephrocalcinosis and renal stones) may occur. The clinical studies showed that treatment related AEs can be limited by titrating alfacalcidol dose based on serum calcium levels. In addition, alfacalcidol increases gastrointestinal absorption of phosphate which may aggravate hyperphosphataemia. Again, the occurrence of hyperphosphataemia was limited as patients were treated for high phosphate levels and alfacalcidol dosage also is adjusted based on phosphate levels. Another potential safety concern with alfacalcidol is occurrence of low bone turnover disease or adynamic bone disease because of oversuppression of PTH levels. There were no reports of adynamic bone disease, whereas efficacy data showed that some patients had very low iPTH levels. A study by Hamdy (1995) showed that treatment with alfacalcidol can result in adynamic bone disease in patients with mild to moderate renal failure. It is likely that this over-suppression of iPTH is manageable with adherence to current treatment guidelines in which dose adjustments are based on monitoring of iPTH with specified targets for each CKD stage. This is adequately reflected in the SPC. Overall, alfacalcidol treatment is part of a multitherapeutic approach including treatment of hypocalcaemia and hyperphosphataemia and dose adjustments are made upon regular monitoring of calcium, phosphate, PTH and calcium x phosphate product thereby limiting the incidence of adverse events.

Information on long term treatment with alfacalcidol in clinical trials is limited. The main concern with vitamin D metabolites is the risk of inducing or accelerating the progression of renal failure. The current long term study over two years (OA 186) did not indicate a more rapid decline in renal function compared with placebo at the currently used dosages. The limited data from clinical trials can be acceptable when combined with data from post-marketing surveillance, as alfacalcidol is available on the market for about thirty years. Again, most reported AEs relate to hypercalcaemia. No new safety signals were identified and these data are considered to support the safety profile of alfacalcidol in the proposed indications in both adults and children.

Pharmacovigilance plan/risk management plan
The Pharmacovigilance system described by the MAH fulfils the requirements and provides adequate evidence that the MAH has the services of a qualified person responsible for Pharmacovigilance and has the necessary means for the notification of any adverse reaction suspected of occurring either in the Community or in a third country. The MAH committed to file a variation for the update of the Pharmacovigilance System.
An updated version of the European Risk management plan has been provided and is acceptable.

Product information

SPC
In 2008 the MAH filed a variation to update information on amongst others the quality and clinical part of the dossier. The main change in the SPC involved a rewording of the indication in line with current treatment insights and current clinical practice (NKF K/DOQI treatment guidelines 2003) and an extension in posology for the treatment of secondary hyperparathyroidism in stage 5 chronic kidney disease (CKD) patients (pulse treatment in addition to continuous treatment). During the variation procedure, the extension in posology was not approved because of lack of well-designed clinical trials.

Readability test
The package leaflet has not been evaluated via a user consultation study, as a bridging report was provided. Reference was made to a successful user test on the PIL for One-Alpha 2 micrograms/ml oral drops, solution. Content, visual presentation and key safety messages for both PILs were analyzed, based on which a waiver could be granted.
III OVERALL CONCLUSION AND BENEFIT-RISK ASSESSMENT

The MEB, on the basis of the data submitted, considered that Etalpha i.v., 2 microgram/ml solution for injection demonstrated adequate evidence of efficacy for the approved indications as well as a satisfactory risk/benefit profile and therefore granted a marketing authorisation. The date of authorisation in the Netherlands was 13 May 1991. The other member states mutually recognised the Dutch evaluation for the marketing authorisation.

The chemical-pharmaceutical quality of the drug substance and finished product has been sufficiently demonstrated.

For this application, the MAH submitted a total of 7 clinical studies: three pharmacokinetic studies, four studies in patients with renal failure. Clinical efficacy and safety have been demonstrated in support of the approved indications.

The MAH has provided written confirmation that systems and services are in place to ensure compliance with their pharmacovigilance obligations.

The SPC, package leaflet and labelling are in the agreed templates and were adequately updated in accordance with current treatment insights and clinical practice.

There was no discussion in the CMD(h). Agreement between member states was reached during a written procedure. The mutual recognition procedure was finished on 14 April 2010.

A European harmonised birth date has been allocated (28 February) and subsequently the first data lock point for alfacalcidol is 28 February 2012. The first PSUR will cover the period from 1 March 2010 to 28 February 2012, after which the PSUR submission cycle is 3 years.

The date for the first renewal will be: 13 May 2015.

The following post-approval commitment has been made during the procedure:

Pharmacovigilance
- The MAH committed to file a variation for an update of the Pharmacovigilance System.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR</td>
<td>Adverse Drug Reaction</td>
</tr>
<tr>
<td>AE</td>
<td>Adverse Event</td>
</tr>
<tr>
<td>ASMF</td>
<td>Active Substance Master File</td>
</tr>
<tr>
<td>ATC</td>
<td>Anatomical Therapeutic Chemical classification</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under the Curve</td>
</tr>
<tr>
<td>BP</td>
<td>British Pharmacopoeia</td>
</tr>
<tr>
<td>CEP</td>
<td>Certificate of Suitability to the monographs of the European Pharmacopoeia</td>
</tr>
<tr>
<td>CHMP</td>
<td>Committee for Medicinal Products for Human Use</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>C_{max}</td>
<td>Maximum plasma concentration</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic Kidney Disease</td>
</tr>
<tr>
<td>CMD(h)</td>
<td>Coordination group for Mutual recognition and Decentralised procedure for human medicinal products</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>EDMF</td>
<td>European Drug Master File</td>
</tr>
<tr>
<td>EDQM</td>
<td>European Directorate for the Quality of Medicines</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
</tr>
<tr>
<td>GLP</td>
<td>Good Laboratory Practice</td>
</tr>
<tr>
<td>GMP</td>
<td>Good Manufacturing Practice</td>
</tr>
<tr>
<td>ICH</td>
<td>International Conference of Harmonisation</td>
</tr>
<tr>
<td>iPTH</td>
<td>Intact Parathyroid Hormone</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention to Treat</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenous</td>
</tr>
<tr>
<td>MAH</td>
<td>Marketing Authorisation Holder</td>
</tr>
<tr>
<td>MEB</td>
<td>Medicines Evaluation Board in the Netherlands</td>
</tr>
<tr>
<td>OTC</td>
<td>Over The Counter (to be supplied without prescription)</td>
</tr>
<tr>
<td>PAR</td>
<td>Public Assessment Report</td>
</tr>
<tr>
<td>Ph.Eur.</td>
<td>European Pharmacopoeia</td>
</tr>
<tr>
<td>PIL</td>
<td>Package Leaflet</td>
</tr>
<tr>
<td>PSUR</td>
<td>Periodic Safety Update Report</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathyroid Hormone</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SPC</td>
<td>Summary of Product Characteristics</td>
</tr>
<tr>
<td>$t_{\frac{1}{2}}$</td>
<td>Half-life</td>
</tr>
<tr>
<td>t_{max}</td>
<td>Time for maximum concentration</td>
</tr>
<tr>
<td>TSE</td>
<td>Transmissible Spongiform Encephalopathy</td>
</tr>
<tr>
<td>USP</td>
<td>Pharmacopoeia in the United States</td>
</tr>
</tbody>
</table>
STEPS TAKEN AFTER THE FINALISATION OF THE INITIAL PROCEDURE - SUMMARY

<table>
<thead>
<tr>
<th>Scope</th>
<th>Procedure number</th>
<th>Type of modification</th>
<th>Date of start of the procedure</th>
<th>Date of end of the procedure</th>
<th>Approval/ non approval</th>
<th>Assessment report attached</th>
</tr>
</thead>
</table>